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Abstract-The genesis of the statement of classical and generalized boundary conditions is considered in 
relation to parabolic and hyperbolic heat conduction equations. Differential-type boundary conditions of 
any orders, that involve all earlier known boundary conditions, are generalized for hyperbolic equations ; 
the possibility for the formulation of boundary conditions in integral or integrodifferential forms of 
hyperbolic equations in heat and mass transfer theory, electrodynamics and thermomechanics of media 

with memory or with relaxation processes is shown. 

INTRODUCTION 

THE BOUNDARY conditions in transport theory, just as 
in the general theory of partial differential equations, 
are of fundamental importance since they determine 
the explicit form of the solution. This is because the 
general solutions of such equations are determined 
accurately for arbitrary functions. The specific form 
of an arbitrary function can be found only from 
additional conditions proceeding from the prescribed 
physical processes on the boundaries of the region 

considered, from the mathematical requirement that 
the solution should be finite or from its prescribed 
behaviour at singular points, lines, discontinuity sur- 
faces or at far removed points. The statement of 
boundary conditions frequently determines the math- 
ematical correctness of a boundary-value problem 
according to Hadamard-Tikhonov. The boundary 
conditions on interfaces are usually formulated in 

physical problems with account for the basic con- 
servation laws in integral differential or other forms. 
In the classical heat conduction theory, based on the 
Fourier law and the respective parabolic heat con- 
duction equation 

pcpg= divAgrad T-KT+F (1) 

with the initial condition at 

t = 0 T(t, X, Y, 4 = T,(O, X, Y, 4 (2) 

four boundary conditions were usually investigated 

[l, 21: 

(i) The first kind boundary condition is that when 
the following unknown function is prescribed on 
the bounding surface : 

Tlr = cp. (3) 

(ii) The second kind boundary condition consists 
of the assignment of the unknown function 
derivative along the normal to the surface at the 

interface 

(iii) The third kind boundary condition consists in 
the assignment of a linear combination of the 
unknown function with its normal derivative at 

the interface 

l~T+/%lr = i. (5) 

(iv) The fourth kind boundary condition is that 
when the unknown functions (temperatures) and 

heat fluxes are equal at the boundary, provided 
there is a perfect contact between two media and 

no heat release at the interface 

T,Ir+, = T,Ir-,, q,lr+o = qzlrmo. (6) 

Different modifications and means of these bound- 

ary conditions for other types of equations are known. 
For example, for the Laplace elliptic equation in the 
theory of complex variable functions and for the 
Poisson elliptic equation in the theory of the poten- 
tial the first condition is called, following Riemann 
[3], the condition of Dirichlet ; the second boundary 
condition is called the Neumann condition; the third 
boundary condition is called a mixed one, or the con- 
dition with an oblique derivative. The fourth bound- 
ary condition is called the condition of conjugation. 
A particular separate case of these are periodic bound- 
ary conditions. 

It should be noted that boundary conditions (i)- 

(iv) for elliptic, parabolic and hyperbolic equations 
were encountered as long ago as the classical works 
of Taylor, Bernoulli, D’Alembert, Laplace, Fourier, 
Poisson, Ostrogradsky and others. Therefore, for the 
sake of historical justice, it would be better to call 
these boundary conditions after the scientists who 
first formulated them. Strictly speaking, the Dirichlet 
problem is the name given by Riemann in 1857, in 
honour of Lejeune-Dirichlet [3], to the boundary- 
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NOMENCLATURE 

a, b boundaries of the segment a < z <b t time 
a,, a2, ax, ad, b,, bz, bj, b, prescribed T temperature 

functions or constants T0 initial function of temperature 

; 
concentration u voltage 
linear capacity UO prescribed initial function 

co concentration capacity at z = a and z = b z coordinate. 

CP 
heat capacity 

D diffusion coefficient Greek symbols 
E 

F 

G 

10 

.I”! 
k 

K(t 
L 

Lo 

n 

4 
40 
Q 
R 

RO 

- 

prescribed external voltage 
function of heat sources (sinks) 
linear conductivity 
current 
prescribed initial function 

mass flux 
coefficient 

-7) kernel of equation 
linear inductance 
concentrated inductance at z = a and 
z=b 

concentration 
heat flux 
initial function of heat flux 
density of mass sources (sinks) 
linear resistance 
concentrated resistance at x = a and 
z=b 

coefficients 
coefficients 

instantaneous volumetric heat capacity 
internal energy relaxation function 
boundary 
coefficient 
instantaneous thermal conductivity 
coefficient 
prescribed time function at the boundary 
density 
mass flux relaxation time 
heat flux relaxation time 
prescribed time function at the boundary 
prescribed function 
prescribed time function at the boundary 
prescribed function. 

value problem on the search of the harmonic function 
by the prescribed values of the function at all the 
points of the boundary. Riemann also pointed to the 
possibility for the formulation of other boundary con- 

ditions. The first kind boundary conditions were 
encountered in the works of D’Alembert (1747), Euler 
(1748) and Bernoulli (1747) in their famous debate 
about the representation of the function (see [3]), as 
well as in the works of other scientists for hyperbolic 
equations in the theory of oscillations of jets, rods and 
membranes ; in the heat conduction theory they were 
formulated by Fourier (1822) [6], Ostrogradsky 
(1827) [6], Poisson (1835) [7] and others ; in the elec- 
tromagnetism theory they were considered by Green 
(1828) [8] and Gauss (1840), among others. Different 
extensions of boundary conditions in the theory of 
analytical functions were made by Hilbert, Poincare, 
Volterra, Vekua, Gakhov and others [lo]. 

The second kind boundary conditions were con- 
sidered in the heat conduction theory in the works of 
Fourier (1822) [6], Ostrogradsky (1826) [7], Poisson 
[l 11, Lame [12] ; in fluid dynamics-in the works of 
Ostrogradsky [7] and others ; in electrodynamics-in 
the works of Kirchhoff (1848) [13,14] and Neumann 

1151. 
The third kind boundary conditions in the heat 

conduction theory were first considered by Fourier. 

Here they correspond to the Newton-Richman heat 
transfer law; while in electrodynamics they cor- 
respond to the impedance boundary condition of 
Shchukin and Leontovich. The third kind bound- 
ary conditions were also encountered in the works of 

Poisson, Ostrogradsky and Lame [ 121. 
Also encountered in the works of Fourier (1822) 

[6], Ostrogradsky (1828) [7] and Poincare [ 161 are the 
following boundary conditions 

which are also called the conditions with an oblique 
derivative, or the Poincare problem. 

In the heat conduction theory the third kind 
boundary conditions were challenged by Luikov [ 171 
in connection with the development of conjugated 
boundary-value problems. 

The fourth kind boundary conditions were en- 
countered in the heat conduction theory in the 
works of Fourier (1822) [6] (in his problem of a ring), 
Kirchhoff [18] and Riemann [19], and in the theory of 
vibrations of composite strings-in the works of 
Bernoulli [5], and others. 

For a second-order hyperbolic equation the assign- 
ment of two initial conditions is required : of the func- 
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tion proper, and of its derivative at t = 0 

T = To(O,x, Y, 4, 
dT 
5 I= o = TXO, x, Y, 4. (7) 

The initial conditions of the form of (2) for a para- 
bolic equation and of the form of (7) for a hyperbolic 
equation are also called the Cauchy conditions, 
although the initial conditions for a second-order 
hyperbolic equation-the equation for the oscillations 
of strings-was first formulated by Euler in 1748 ; in 
heat conduction theory they were first encountered in 
the works of Fourier [B]. It should also be noted here 
that the parabolic equation of type (1) was also first 
encountered in the works of Euler [Z] as were the 
Laplace elliptic-type equations and different types of 
hyperbolic and mixed equations. The modern classi- 
fication of the types of equations was made in the 
works of Laplace, Monge and DuBois-Reymond [21]. 
The latter was the first to classify quasi-linear, second- 
order, partial differential equations into elliptic, 
hyperbolic and parabolic types. Mixed types of 
differential equations were set apart later in the works 
of Tricomi 1221, Frank1 [23], Lavrentiev, Bitsadze 1241, 
and others. This classification should always be borne 
in mind when considering and stating boundary con- 
ditions. 

Thus, for hyperbolic-type equations, apart from 
boundary conditions (i)--(iv), the statement of other 
conditions is also possible. When the conditions are 
prescribed on the non-characteristic curve, this cor- 
responds to the Cauchy problem; the assignment of 
conditions on the characteristics corresponds to the 
Darbu problem; when part of the conditions is pre- 
scribed on characteristic curves and part on non- 
characteristic curves, this corresponds to different 
mixed problems. For mixed-type equations the state- 
ment of different boundary conditions is possible 
such as the problems of Tricomi, Frankl, etc. 

GENERALIZED DIFFERENTIAL-TYPE 

BOUNDARY CONDITIONS 

Boundary conditions (i j(iv) are not the only types 
of boundary conditions that are prescribed. It is per- 
tinent here to mention the well-known mathematical 
problems of Gilbert who, in his work “The genera1 
problem of boundary conditions”, advanced, as one 
of the unresolved problems, the 20th one which is 

I.. closely connected with those above and is the problem 
on the existence of solutions to partial differential equa- 
tions with prescribed boundary conditions. Ingenious 
methods of Schwan, Neumann, PoincarA have in the main 
led to the solution of this problem for the case of the 
differential equation of the potential, but, nevertheless, 
these methods cannot be directly extended to the case 
when the values of derivatives or relationships between 
these values and those of the unknown function are pre- 
scribed on the boundaries . [25]. 

This suggests the idea that different generalizations 
of boundary conditions are possible and have been 

undertaken in different areas of mathematical 
physics. 

Some generalizations of boundary conditions per- 
taining to the heat and mass transfer theory will now 
be considered. 

Even a formal generalization of boundary con- 
ditions (i j(iv) leads to the statement of generalized 
boundary conditions--called by the present author 
the fifth boundary-value problem (v) [26-291. It con- 
sists in the solution of equation (1) with initial con- 
dition (2) under the following boundary conditions : 

The fifth kind boundary-value problem (8) involves, 
as a special case, boundary conditions (i>-(iv) 
that result from relations (8) by means of an 

appropriate choice of the coefficients ai and 6,. It 
turned out that boundary conditions (8) are of import- 
ance in their own right and were investigated in detail 
by Steklov as early as in 1923 [30]. He showed that 
depending on the differences composed of the 
coefficients 

aibk - akbi (i, k = 1,2,3,4) 

two cases are possible : (1) when the difference is not 
equal to zero ; or (2) one of the differences is equal to 
zero while any other is not zero. In the first case, 
conditions (8) are reduced to the canonical form 

$6 b) = aT(t,u)+flT(t, b) 

;(t, a) = yT(t, a)+6T(r, b) 

(91 

and in the second case to 

Ut, b) = pT(t, a) 

g(t,h) = a&2)+,T(t,u) 
(10) 

where tl, J, y, 6, p, 0, z are some constants. 
Vladimirov [30] indicated still other independent 

cases resulting from (8). For example, the third case 

T(t, b) = pT(t, a) 

(11) 

at bf+ bz # 0 and pb, = 0 and the cases that result 
from relations (11) on replacing a by 6. Steklov also 
mentioned the physical application of the resulting 

. . I conditions (9) which comprise the problems on the 
cooling of non-closed solid bodies of linear dimensions (a 
straight rod and a rod bent into a non-closed curve), 
while the second conditions (10) correspond to the same 
problems of closed solid bodies of linear dimensions (con- 
tinuous ring, rod bent into a closed curve). These two 
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classes of problems, different in physical aspects, are some- 
what peculiar from the viewpoint of a pure analysis and 
therefore merit particular consideration. 

The latter two cases of the form of equations (11) are 
called exceptional and are considered separately by 
Steklov in ref. [30, Chap. 61. 

Thus, it has turned out that, apart from formal 
significance, boundary conditions (8) have also the 
physical meaning and mathematical independence as 
a special class of boundary conditions. This allowed 
the author to refer to these conditions as Steklov’s 
boundary-value problem [28, 291. 

Boundary conditions (8) contain a linear com- 
bination of unknown functions and their first spatial 
derivatives. 

In the heat conduction theory and mathematical 
physics [2, 311 boundary conditions were considered 
that contain a linear form of the unknown function 
and its first space and time derivatives, i.e. the bound- 
ary conditions of the form [29, 3 l] : 

or 

By eliminating the time derivative with the aid of 
equation (l), these boundary conditions are reduced 
to a non-classical boundary condition containing the 
second derivatives 

+Y 

The boundary conditions involving higher deriva- 
tives were introduced into the heat conduction theory 
by Samarsky [31] and Tikhonov [32]. Tikhonov also 
considered the case when the order of the derivatives 
in the boundary condition can exceed the order of the 
equation itself 

= yk. (15) 

The boundary conditions containing the space and 
time derivatives, as well as higher and mixed deriva- 
tives, also occur naturally in the theory of heat and 
mass transfer in the case of finite rate of heat and mass 
propagation which is based on the generalized laws 
of Fourier [l, 33, 401 

q = -i,grad T-q,: 

and of Fick 

j, = -Dgradc-r,.,k (17) 

with regard for relaxation processes at the finite relax- 
ation times 7‘4 and 7,_ [42]. 

The heat balance equation 

PC,,:= -divq-K-TfF (18) 

yields, instead of equation (l), the hyperbolic heat 
conduction equation, for example, for temperatures 

-n-T+~~gfF (19) 

and a similar equation for the flux q. 
Equation (17) and mass conservation law (con- 

tinuity equation) 

ac 
~ = -divj,,-Kc+S 
at (20) 

yield the hyperbolic equation of mass transfer with 
the finite rate of mass propagation 

a% ac 
z,,~+r)r=DA~-~~K~-K~+~,,~+S (21) 

/.. 

which is analogous in structure to the hyperbolic heat 
conduction equation (19). The systems of generalized 
heat and mass transfer equations (16t(l8), (20) are 
analogous to the hyperbolic equations of long lines 

au ai 
-= 
a2 

-Lg-Ri 

ai 
(22) 

Z’ 
-c;-GU 

or to the Maxwell equations [41] 

aE dH 
-= 
az -p”at 
aH aE 
-= 
a2 

-Eat +aE. 

(23) 

This analogy was already noted in 1968 [3341] and 
was widely employed to develop the nonlinear transfer 
theory [29]. Natural boundary conditions (ik(v) also 
take place for the generalized hyperbolic heat con- 
duction equation, but then they are transformed into 

generalized boundary conditions with first derivatives 

of the form of conditions (12), (13) or into those with 
higher or mixed derivatives. 

Obtain for u the second-order equation and similar 
equations for i, E, H. Take, for example, the fourth 
kind boundary condition (6) 

ah 
- - LC$ +(RC+GL); +GRu. 
az2 - 

(24) 

To solve equation (19) it is necessary to eliminate 
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the flux q from equation (24) with the aid of equation 

(16) 

T, Lo+0 = 84, 
T*l,=,-0, 11% +zq, at __ 

.-II+0 

=l!s+z !!!A 
2 aZ 42 at r_O’ (25) 

Differentiating this equation with respect to z 

and equation (18) with respect to t and eliminating 
(a2q)/(i3z at), the following boundary condition 
be obtained 

will 

(26) 

from which it is seen that boundary condition (26) 
involves the second space and time derivatives of the 
unknown function, the first time derivatives of the 
unknown function T and of the known source F. 

These and more general boundary conditions of any 

other order were formulated by the author in his 
works [29, 42441. 

The boundary conditions involving higher deriva- 

tives were considered by Ostrogradsky [7] and Krylov 
[45] in the theory of oscillations of strings and 
rods loaded at the ends by concentrated masses ; for 
example, the equation of string oscillations [45] 

was considered 

with the conditions on one end 

a% 2 au _- 
at2 - -c az 

which leads to the boundary condition 

a2v a0 
u~~+c=~= F(z,t) 

(27) 

involving the first and second spatial derivatives or the 
second time derivative and the first space derivative. 

In the theory of wave motions of an ideal fluid with 
a free surface, Ostrogradsky obtained for the potential 
the following boundary condition on the free surface 
in the linear approximation [7] : 

(30) 

which also contains the second time derivative and 
the first space derivative. 

In the theory of long lines one encounters the 
boundary conditions of the form [46] : 

R,~+L,~+~i=~+~ (31) 
0 

that contain the first and second time derivatives of 
the function, the function proper and the derivative 

of the source. 
The boundary-value problems with higher deriva- 

tives were considered in the elasticity theory, in the 
theory of boundary-value problems with higher 
derivatives [lo]. This allows one to isolate the bound- 
ary conditions containing higher and mixed deriva- 
tives into a special class, which are called the boundary 
conditions of the sixth kind (vi) or Ostrogradsky- 
Samarsky-Tikhonov’s conditions [28, 291. 

And, finally, the generalized statement of boundary 

linear conditions for linear equations can be presented 
in the form of a linear operator of boundary con- 
ditions involving in a general case the derivatives of 
any order [42] 

aT aT a=T a=T a=T @ = R T,,at,z,atz,aZ2>aZ,... 
> 

(32) 

where R is the linear differential operator of the nth 
order. Restricting the discussion, for example, to the 
second derivatives, this operator can be presented in 
a general form as follows [49] : 

a’T, a’T, a’T, aT, 
tl,iT +Gl,i--- +q, +a,,- 

a2 azat at aZ 

+B,T = Y, (33) 
r-0 

where tlij and pij are the coefficients, Yi is the function, 
or it can be reduced to different canonical forms. 
These boundary conditions with the second-order 
derivatives include all previous boundary conditions 
(ik(vi) with the derivatives up to the second-order, 
inclusive. The boundary condition of the general form 
(32) formally includes all possible differential-type 
linear conditions. Also possible is the statement of 
generalized non-linear differential-type boundary 
conditions [29]. 

GENERALIZED BOUNDARY CONDITIONS 

OF INTEGRAL AND 

INTEGRODIFFERENTIAL TYPES 

The boundary conditions of the transport theory 
can be formulated in integral and integrodifferential 
forms. The different forms of integral-type boundary 
conditions for parabolic equations were considered in 
refs. [2, 47,481. 

The solution of equation (16) with the initial con- 
dition 

t = 0, T= T,(z), q = qo(z) (34) 
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will be written in the form 

s ’ 2.8T 
q(z, t) = - o ;Ze-m”-“l’~ +qO(z)e-(‘/‘J. (35) 

‘I 

Any boundary condition containing the heat flux will 
acquire, when converting to the description in terms 
of temperature, the form of an integrodifferential 

equation. For example, conditions (25) will take the 
form 

TL.+o = T>lz=a~o 

(36) 

Boundary conditions (ii) and (iii), that contain the 
heat flux, can be transformed in a similar fashion. 
By substituting equation (35) into equation (18) the 
following integrodifferential equation can be obtained 

+ ~~qo(z)e~‘l:iq)-~T+F (37) 

The boundary condition (31) for the theory of long 
lines is written down in integrodifferential forms as 

(38) 

The mating of electrical circuits can be done via 
different elements (capacitor, inductor, resistor, etc.) 
and this gives rise to a much greater diversity of the 
types of conjugate problems. 

The integration of the second equation of system 

(32) over t yields 

s ’ 1 ai 
u=- --_e 

o caZ 
~[(T~I)G/~+~~(~)~~“G/O (39) 

whence it is seen that the relaxation time in equation 
(32) is determined by the expression zP = C/G. Then, 
to determine i from equation (38) the following 
integrodifferential equation is obtained 

ai 
Loif+Roi=& 

s 

f 3% 

O oazze 
-~(7-0G/cl _ au, 

a2 e 
-W/O 

(40) 

while equation (31) yields the following integro- 
differential boundary condition 

L,;r+R,i+& s idt 
0 0 

_e~[“~“C’qd~+uoe-“G/O, (41) 

Similarly one can obtain a number of other boundary 
conditions of integral or integrodifferential forms [42]. 

On returning to the equations and boundary con- 
ditions of intensive heat and mass transfer it can be 
seen that equation (19) describes the propagation of 
heat with the finite rate and, at the same time, as 
an integrodifferential equation, it takes into account 
the prehistory of the process. The study of integro- 
differential equations for media with memory was 
started long ago in the hereditary elasticity theory [37, 
481, where the dynamic equations of the medium with 
memory result from ordinary equations by replacing 
the material characteristics of the medium by the inte- 
gral operator of heredity. By taking into account the 
ordinary and hereditary operators of the heat flux in 

the form 

q’ = -I.VT- s I A’ 
pVTK(t-z)dz 

0 ?q 
(42) 

and the operators of the ordinary and hereditary 
mass density of the thermal energy 

(pc,T)* = y(O)T+ 
s 

‘y’Tdr 
0 

(43) 

the equations of the form of (18), (42) and (43) will 
give the following integrodifferential heat conduction 
equation for media with memory [50] 

,$+ 
s 

q 2 
ly’gdr = A$ 

0 at 

+ :i’~K(r?)dr-icT+F (44) 
s 

where y(O) is the instantaneous volumetric heat 
capacity and n(O) are the instantaneous thermal con- 
ductivity coefficients, y’ is the relaxation function of 
the internal energy, K(t-7) is the integral equation 
kernel. The initial conditions at t = 0 are usually pre- 

scribed in the form 

1y(O)T+[a’Tdri,_ = To(z) (45) 

~--i~-$~K’(t-~)~dr~ =qo(z). (46) 

The boundary conditions for media with relaxation 
or memory result from the substitution of the integral 
operators of heredity into corresponding boundary 
conditions for the expressions for ordinary media. 
Thus, for example, equations (5), (42) and (43) yield 
the boundary conditions of integrodifferential type 

I s 
ctT+a ‘n’Tdr-/?1VT-/IL 

I 
K(t--)VTdz = 5. 

0 s 0 

(47) 

Other integrodifferential boundary conditions are 
obtained in a similar manner. 



The mathematical aspects of the generalized bound- 
ary conditions are discussed in refs. [5&60]. 

27. P. M. Kolesnikov, Energy Transport in Non-homo- 
geneous Media (Mathematical Theory). Izd. Nauka 
Tekhnika, Minsk (1974). 

28. P. M. Kolesnikov, Mathematical methods in the theory 
of propagation of fields in non-homogeneous media. 
Heat and Mass Transfer-VZ, Vol. 9, pp. 1799184. Izd. 

REFERENCES 
ITMO AN BSSR, Minsk (1980). 

29. P. M. Kolesnikov, MethodF of the Theory of Transport in 
A. V. Luikov, Heat Conduction Theory. Izd. Vysshaya Non-linear Media. Izd. Nauka Tekhnika. Minsk (1981). 
Shkola, Moscow (1967). 30. V. A. Steklov, Basic Problems of the’ Mathematical 
H. S. Carslow and J. C. Jaeger. Conduction of Heat in 
Solids. Clarendon Press, Oxford (1959). _ 

Physics, Part 1. Izd. Akad. Nauk SSSR, Leningrad 
(1923): 2nd revised edn. Izd. Nauka. Moscow (1983). 

B. Riemann, Grundlagen fur eine allgemeine Theorie 31. A. A.’ Samarsky, Concerning a problem of heat propa- 
der Funktionen einer veriindlichen complexen G&se. gation, Part 1, Vestnik MGUNo. 3,855lOO (1947); Part 
B. Riemann’s gesammelte methematische Werke und 2, No. 6, 119-129 (1947). 
wissenschaftlicher Nachlass. Teubner, Leipzig (1876). 32. A. N. Tikhonov, About the boundary-value conditions 
P. G. Lejeune-Dirichlet, Vorlesungen iiber die um- involving the derivatives of the order exceeding the order 
qekehrten Verhaltniss des Quadrats der Emqernung of the equation, Mathematical Articles, 2, Vyp. 68(1 I), 
wirkenden Krafte. Teubner, Leipzig (1876). 35-56 (1950). 
D. Bernoulli, Hydrodynamics (in Russian). Izd. Akad. 33. P. M. Kolesnikov, Reducing the equations of non-linear 
Nauk SSSR, Moscow (1959). unsteady-state high-intensity heat- and mass-transfer to 
J. B. J. Fourier, Theorie Analitiqur de la Chaleur. equivalent linear equations. An analogy of the theory of 
Gauthier-Villars, Paris (1822). high-intensity heat and mass transfer, J. Engng Phys. 15, 
M. V. Ostrogradsky, Complete Works, Vol. 1. Izd. Akad. 6899692 (1968). 
Nauk UkrSSR. Kiev (1959). 
G. Green. Mathemat&al Papers of the Late G. Green. 

34. P. M. Kolesnikov, Simple and shock waves in nonlinear 
high-intensity nonstationary processes of heat and mass 

Macmillan. London (1871). transfer, J. Engng Phys. l&866869 (1968). 
C. F. Gauss, Selected Papers on Terrestrial Magnetism, 35. P. M. Kolesnikov, Concerning the equations of high- 
pp. 23-234 (in Russian). Izd. Akad. Nauk SSSR, rate nonlinear heat and mass transfer processes, Vesti 
Moscow (1952). Akad. Navuk BSSR. Ser. Fiz.-Enera. Navuk No. 2. 76 
F. D. Gakhov, Boundary-value Problems. Izd. Nauka, 87 (1969). 
Moscow (1977). 36. P. M. Kolesnikov, Investigation of one class of inte- 
S. D. Poisson, Mathematical Theorie de la Chaleur. grodifferential equations with partial derivatives which 
Gauthier-Villars, Paris (1835). 
G. Lame. Lecons sur la Theorie de la Chaleur. Gauthier- 

describes the processes of transfer in media with a fading 

Villars, Paris(l861). 
memory. In Problems of Energy Transfer in Non-homo- 

G. Kirchhoff, Vorlesungen iiber Mathematischen Physik, 
geneous Media, pp. 17-30. ITMO AN BSSR, Minsk 
(1975). 

Bd. 3, Elektrizitat und Magnetismus. Teubner, Leipzig 37. Ya. S. Podstrigach and 0. M. Kolyano, Generalized 
(1891). 
G. Kirchhoff, Uber die Anvendbarkeit der Formeln fiir 

Thermomechanics. Izd. Naukova Dumka, Kiev (1975). 
38. W. A. Day, The Thermodynamics of Simple Materials 

die Intensitaten der galwanischen Striime in einem with Fading Memory. Springer-Verlag, Berlin (1972). 
Systeme linearer Leiter auf Systeme die zum Teil nicht 39. M. E. Gourtin and A. C. Pipkin, A general theory of 
aus linearen Leitern bestehen, Ann. Phys. Chem. 75,189- heat conduction with finite wave speeds, Archs ration. 
205 (1848). Mech. Analysis 31, 113-126 (1968). 
F. Neumann, Vorlesungen iiber die Theorie des Potentials 40. A. V. Luikov, Some problems of the theory of mass and 
und der Kugel-functionen. Teubner, Leipzig (1887). heat transport, J. Engng Phys. 26, 537-548 (1974). 
H. Poincare, Theorie Analytique de la Propagation de la 41. P. M. Kolesnikov, Introduction into the Nonlinear Elec- 
Chaleur. Gauthier-Villars, Paris (1895). trodynamics. Izd. Nauka Tekhnika, Minsk (1971). 
A. V. Luikov, Handbook of Heat and Mass Transfer. 42. P. M. Kolesnikov, Investigation of certain equations of 
Izd. Energiya, Moscow (1972). the mathematical physics with periodic coefficients. In 
G. Kirchhoff, Vorlesungen iiber die Theorie der Warme. Asymptotic Methods in the Theory of Systems, Vol. 6, 
Teubner, Leipzig (1894). pp. 75-90. Irkutsk (1974). 
Die Partiallen Dtflerentialen Gleichungen der Mathem- 43. P. M. Kolesnikov, Nonlinear heat conduction problems. 
atischen Physik nach Riemann’s Vorlesungen (bearbeitet In Physical Kinetics and Mathematical Methods in the 
von H. Weber), Bd. 1, 2. Verlag Wieveg, Braunschweig Theory of Transfer. Izd. ITMO AN BSSR, Minsk (1977). 
(1912). 44. P. M. Kolesnikov, The methods for the solution of non- 
L. Euler, Institutionum Calculi Integralis. v. terbium. linear equations of the theory of transfer. In Analytical 
Petropoli Impenfis Acad. Imper. Scientiarum (1770). 
P. DuBois-Reymond, Uber lineare partielle Differ- 

and Numerical Methods in the Theory of Transfer, pp. 
348. Izd. ITMO AN BSSR, Minsk (1977). 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

entialgleichungen zweiter Ordnung, 2. reine angew. 45. A. N. Krylov, About Certain Differential Equations of the 
Math. 104,241&301 (1889). Mathematical Physics Having Applications in Technical 
F. Tricomi, Sulle eguazioni lineari alle derivate parziali Problems. Izd. AN SSSR, Leningrad (1932). 
di 2” ordine di tipo misto, Mem. Lincei Ser. 5 14, 1333 46. B. M. Budak, A. A. Samarsky and A. P. Tikhonov, 
247 (1923). Collection of Problems of Mathematical Physics. Izd. 
F. I. Frankl, Selected Papers on Gas Dynamics. Izd. Nauka, Moscow (1972). 
Nauka, Moscow (1973). 47. L. I. Kamynin, About a certain boundary-value problem 

of the heat conduction theory with non-classical bound- 
ary conditions, Zh. Vychisl. Mat. Mat. Fiz. 4, 1006 
1023 (1964). 

24. A. V. Bitsadze, Mixed-type Equations. Izd. Akad. Nauk 
SSSR, Moscow (1959). 

25. P. S. Alexandrov (Editor), Gilbert’s Problems. Izd. 
Nauka, Moscow (1969). 

Generalized boundary conditions of the heat and mass transfer 91 

26. P. M. Kolesnikov, Investigation of the parabolic equa- 
tion with variable coefficients under generalized bound- 

48. J. R. Cannon, The solution of the heat equation subject 
to the specification of energy, Q. J. Appl. Math. 21, 155- 
160 (1963). 

ary conditions, Dokl. Akad. Nauk l&995-998 (1974). 49. A. N. Filatov, Asymptotic Methods in the Theory of 



92 P. M. KOLE~NIKOV 

D@erential and Integrod@erential Equations. Izd. FAN, 
Tashkent (1971). 

50. A. A. Dezin, General Questions of the Theory of Boun- 
dary-value Problems. Izd. Nauka, Moscow (1980). 

51. S. Agmon, A. Douglis and L. Nirinberg, Estimates near 
the boundary for solutions of elliptic partial differential 
equations satisfying general boundary value conditions 
I, Commun. Pure appl. Math. 12,623-727 (1959). 

52. Ya. B. Lopatinsky, Introduction IO the Modern Theory 
of Partial Dzfirential Equations. Izd. Naukova Dumka, 
Kiev (1980). 

53. I. M. Vinogradov (Editor), Mathematical Encyclopedia, 
Vols l-5. Izd. Sov. Entsiklopediya, Moscow (1981l 
1984). 

54. V. A. Marchenko and E. Ya. Khruslov, Boundary-value 
Problems in the Regions with a Fine-granular Boundary. 
Izd. Naukova Dumka, Kiev (1974). 

55. V. S. Vladimirov, The Equations of Mathematical 
Physics. Izd. Nauka, Moscow (1967). 

56. J. L. Lions and E. Magenes, Problems aux Limites non 
Homogenes et Applications. Dunod, Paris (1968). 

57. M. L. Rasulov, Application of the Contour Integral 
method to the Solution of Problems for the Second-order 
Parabolic Systems. Izd. Nauka, Moscow (1975). 

58. M. S. Agranovich, Boundary problem for the systems of 
the 1st order pseudo-differential operators, UspekhiMat. 
Nauk 24,61-126 (1969). 

59. 0. A. Ladyzhenskaya, V. A. Solonnikov and N. N. 
Ural’tseva, Linear and Quasi-linear Parabolic-type Equa- 
tions. Izd. Nauka, Moscow (1967). 

60. M. Schechter, General boundary-value problems for 

elliptic differential equation, Commun. Pure appl. Math. 
19,457486 (1959). 

CONDITIONS AUX LIMITES GENERALISEES DU TRANSFERT DE CHALEUR ET DE 
MASSE 

R&sum&On considere la genese de l’ttablissement des conditions aux limites classiques et generalisees en 
relation avec les equations paraboliques et hyperboliques de la chaleur. Des conditions aux limites de type 
differentiel d’ordre quelconque qui impliquent les conditions aux limites classiques sont gentralisees pour 
les equations hyperboliques ; on montre la possibilite de formuler les conditions aux limites sous des formes 
integrales ou integro-differentielles pour les equations hyperboliques dans la theorie du transfert de chaleur 
et de masse, de l’electro-dynamique et de la thermodynamique des milieux avec memoire ou avec des 

mecanismes de relaxation. 

VERALLGEMEINERTE RANDBEDINGUNGEN IN DER WARME- UND 
STOFFUBERTRAGUNG 

Zusammenfassung-Es wird die Formulierung klassischer und verallgemeinerter Randbedingungen fur 
parabolische und hyperbolische Warmeleitgleichungen betrachtet. Randbedingungen jeglicher Ordnung 
vom Differential-Typ, die alle bekannten friiheren Randbedingungen beinhalten, wurden fur hyperbolische 
Gleichungen verallgemeinert. Es wird die Mljglichkeit gezeigt, Randbedingungen in Integral- oder 
Integrodifferential-Form fur hyperbolische Gleichungen in der Wlrme- und Stofftibertragungstheorie 
der Elektrodynamik und der Thermomechanik von Stoffen mit Gedachtnis oder mit Relaxation, zu 

formulieren. 

0606IIIEHHbIE I-PAHM=IHbIE YCJIOBMII TEOPMH TEHJIO-M MACCOHEPEHOCA 

hlOTNlli~--PaCCMOTpeH TeHeWC nOCTaHOBKU KJlZiCCBYeCKWX W 0606UeHHbIx KpacBb,X yCnOBkiii Ha upH- 

Mepe napa6onurecroro w renep6omirecKoro ypaeHeHsn TennonpoBonHocT&i. 0606LueHbI rpaHavHble 

ycnoeen &P$epeHuHanbHoro Tma nm6bIx nopnnKoB ,mK ranep6onarecKex ypaBiieHuti,conepxauuie 

B ce6e BCe B3BcCTHble paWe rpaHWHbU2 yCJIOBHR, nOKa3aHa B03MOxHOCTb +OPMYJIHPOBKA KpaeBblx 

ycnoeal a sHTerpanbHoh4 wm kiHTerpone@@epeHusanbHoM Bwe nnn runep6oneYecKux ypaBHeHG B 

Teopm Tenno-ki MacconepeHoca, 3neKTponaHaMHKe B TepMoMexaHnKe cpen c nahtRTbm sink3 penarca- 


